27 research outputs found

    Neural representation in active inference: using generative models to interact with -- and understand -- the lived world

    Full text link
    This paper considers neural representation through the lens of active inference, a normative framework for understanding brain function. It delves into how living organisms employ generative models to minimize the discrepancy between predictions and observations (as scored with variational free energy). The ensuing analysis suggests that the brain learns generative models to navigate the world adaptively, not (or not solely) to understand it. Different living organisms may possess an array of generative models, spanning from those that support action-perception cycles to those that underwrite planning and imagination; namely, from "explicit" models that entail variables for predicting concurrent sensations, like objects, faces, or people - to "action-oriented models" that predict action outcomes. It then elucidates how generative models and belief dynamics might link to neural representation and the implications of different types of generative models for understanding an agent's cognitive capabilities in relation to its ecological niche. The paper concludes with open questions regarding the evolution of generative models and the development of advanced cognitive abilities - and the gradual transition from "pragmatic" to "detached" neural representations. The analysis on offer foregrounds the diverse roles that generative models play in cognitive processes and the evolution of neural representation

    The management of pediatric severe traumatic brain injury: Italian guidelines

    Get PDF
    Introduction: the aim of the work was to update the “guidelines for the Management of severe traumatic Brain Injury” published in 2012, to reflect the new available evidence, and develop the Italian national guideline for the management of severe pediatric head injuries to reduce variation in practice and ensure optimal care to patients. eViDeNce acQUisitioN: MeDliNe and eMBase were searched from January 2009 to october 2017. inclusion criteria were english language, pediatric populations (0-18 years) or mixed populations (pediatric/adult) with available age subgroup analyses. the guideline development process was started by the Promoting group that composed a multidisciplinary panel of experts, with the representatives of the Scientific Societies, the independent expert specialists and a representative of the Patient associations. the panel selected the clinical questions, discussed the evidence and formulated the text of the recommendations. the documentarists of the University of Florence oversaw the bibliographic research strategy. a group of literature reviewers evaluated the selected literature and compiled the table of evidence for each clinical question. EVIDENCE SYNTHESIS: The search strategies identified 4254 articles. We selected 3227 abstract (first screening) and, finally included 67 articles (second screening) to update the guideline. This Italian update includes 25 evidence-based recommendations and 5 research recommendations. coNclUsioNs: in recent years, progress has been made on the understanding of severe pediatric brain injury, as well as on that concerning all major traumatic pathology. this has led to a progressive improvement in the clinical outcome, although the quantity and quality of evidence remains particularly low

    A global analysis of Y-chromosomal haplotype diversity for 23 STR loci

    Get PDF
    In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic spectra of these markers were determined and a consistently high level of allelic diversity was observed. A considerable number of null, duplicate and off-ladder alleles were revealed. Standard single-locus and haplotype-based parameters were calculated and compared between subsets of Y-STR markers established for forensic casework. The PPY23 marker set provides substantially stronger discriminatory power than other available kits but at the same time reveals the same general patterns of population structure as other marker sets. A strong correlation was observed between the number of Y-STRs included in a marker set and some of the forensic parameters under study. Interestingly a weak but consistent trend toward smaller genetic distances resulting from larger numbers of markers became apparent.Peer reviewe

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    FLUOXETINE modifies the expression of serotonergic markers in a differentiation-dependent fashion in the mesencephalic neural cell line A1 mes c-myc.

    No full text
    Serotonin (5-HT) is a neurotransmitter involved in a variety of CNS functions during development and in adulthood. 5-HT neurons are also involved in the pathogenesis of a number of psychiatric disorders. FLUOXETINE (FLX), a prototypic antidepressant, is a selective 5-HT uptake inhibitor (SSRI) with a demonstrated clinical efficacy in these disorders. SSRI, in a short-term period, binds 5-HT transporter (SERT) raising 5-HT levels at the synapse. Nevertheless, clinical improvement is observed only after 3-4 weeks of treatment. Recently, it has been shown that antidepressants, besides interfering with neurotransmission, can also display an effect on neural cells' proliferation and differentiation. Therefore it has been proposed that antidepressant may exert their clinical effects also acting on cellular functions other then neurotransmission. Here we show that a mesencephalic neural cell line, mes-c-myc A1 (A1) produces 5-HT and expresses SERT and both peripheral (TPH1) and CNS-specific (TPH2) form of tryptophan hydroxylase, the limiting enzyme in 5-HT biosynthesis. Cyclic AMP-dependent neuronal differentiation of A1 cells modulates the expression of TPHs. FLX, as well as citalopram (CIT), another SSRI inhibitor, modulates expression of serotonergic markers depending on the differentiation status of the cells. Interestingly, long-term but not short-term FLX treatment selectively modulates mRNA levels of TPH2, only in differentiated A1 cells. Finally, FLX and citalopram selectively decrease the proliferation rate of undifferentiated A1 cells, whereas have no effects on NIH-3T3 fibroblasts proliferation. In conclusion, neuronal differentiation of A1 cells not only modulates the expression of serotonergic markers, but appears to affect the response to FLX

    The identification and localization of two intermediate filament proteins in the tunic of Styela plicata (Tunicata, Styelidae)

    No full text
    The intermediate filament (IF) proteins Styela C and Styela D from the tunicate Styela (Urochordata) are co-expressed in all epidermal cells and they are thought to behave as type I and type II keratins. These two IF proteins, Styela C and Styela D, were identified in immunoblots of proteins isolated from the tunic of Styela plicata. The occurrence and distribution of these proteins within the tunic of this ascidian was examined by means of immunofluorescence and immunoperoxidase techniques, using anti-Styela C and anti-Styela D antibodies. In addition, immuno-electron microscopy of the tunic showed that the two proteins are located in the cuticle layer and in the tunic matrix. These results represent the first data about the presence of IF proteins in the tunic of adult ascidian S. plicata. The possible involvement of these IF proteins in reinforcing the integrity of the tunic, that represents the interface between the animal body and the external environment, is discussed
    corecore